Гликоген
Содержание:
- Клиническая значимость
- Как усваиваются глюкозамин и хондроитин?
- Гликогеновые запасы и спорт
- Особенности гликогена и метаболизм
- Гликоген
- Гликоген биологическая роль. Мобилизация гликогена (гликогенолиз)
- Польза полисахаридов для похудения
- Увеличение работоспособности в отдельном занятии
- Источники содержания углеводов в пище
- Определение гликогенеза
- Роль вещества в организме человека
- В каких продуктах содержится глюкозамин?
- Синтезирование
Клиническая значимость
Нарушения метаболизма гликогена
Наиболее распространенным заболеванием, при котором метаболизм гликогена становится ненормальным, является диабет, при котором из-за аномальных количеств инсулина гликоген печени может аномально накапливаться или истощаться. Восстановление нормального метаболизма глюкозы обычно нормализует метаболизм гликогена. При гипогликемии, вызванной чрезмерным уровнем инсулина, количества гликогена в печени высоки, но высокие уровни инсулина предотвращают гликогенолиз, необходимый для поддержания нормального уровня сахара в крови. Глюкагон является распространенным методом лечения этого типа гипогликемии. Различные врожденные ошибки метаболизма вызваны недостатками ферментов, необходимых для синтеза или расщепления гликогена. Они также называются заболеваниями, связанными с хранением гликогена.
Эффект истощения гликогена и выносливость
Спортсмены, бегающие на длинные дистанции, такие как марафонские бегуны, лыжники и велосипедисты, часто испытывают истощение гликогена, когда почти все запасы гликогена в организме спортсмена истощаются после длительных нагрузок без достаточного потребления углеводов. Истощение гликогена может быть предотвращено тремя возможными способами. Во-первых, во время упражнения углеводы с максимально возможной скоростью преобразования в глюкозу крови (высокий гликемический индекс) поступают непрерывно. Наилучший результат этой стратегии заменяет около 35% глюкозы, потребляемой при сердечных ритмах, выше примерно 80% от максимума. Во-вторых, благодаря адаптационным тренировкам на выносливость и специализированным схемам (например, тренировки с низкой степенью выносливости плюс диета), организм может определять мышечные волокна типа I для улучшения эффективности использования топлива и рабочей нагрузки для увеличения процента жирных кислот, используемых в качестве топлива, чтобы сберечь углеводы. В-третьих, при потреблении больших количеств углеводов после истощения запасов гликогена в результате физических упражнений или диеты, организм может увеличить емкость хранилищ внутримышечных гликогенов. Этот процесс известен как «углеводная нагрузка». В общем, гликемический индекс источника углеводов не имеет значения, поскольку чувствительность мышечного инсулина в результате временного истощения гликогена увеличивается. При недостатке гликогена, спортсмены часто испытывают сильную усталость, до такой степени, что им может быть трудно просто ходить. Что интересно, самые лучшие профессиональные велосипедисты в мире, как правило, заканчивают 4-5-ступенчатую гонку прямо на пределе истощения гликогена с использованием первых трех стратегий. Когда спортсмены употребляют углевод и кофеин после истощающих упражнений, их запасы гликогена, как правило, пополняются быстрее , однако минимальная доза кофеина, при которой наблюдается клинически значимое влияние на насыщение гликогена, не установлена.
Список использованной литературы:
Kreitzman SN, Coxon AY, Szaz KF (1992). «Glycogen storage: illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition» (PDF). The American Journal of Clinical Nutrition. 56 (1 Suppl): 292s–293s. PMID 1615908
Miwa I, Suzuki S (November 2002). «An improved quantitative assay of glycogen in erythrocytes». Annals of Clinical Biochemistry. 39 (Pt 6): 612–3. PMID 12564847. doi:10.1258/000456302760413432
Berg, Tymoczko & Stryer (2012). Biochemistry (7th, International ed.). W. H. Freeman. p. 338. ISBN 1429203145.
F. G. Young (1957). «Claude Bernard and the Discovery of Glycogen». British Medical Journal. 1 (5033 (Jun. 22, 1957)): 1431–7. JSTOR 25382898. doi:10.1136/bmj.1.5033.1431
Stryer, L. (1988) Biochemistry, 3rd ed., Freeman (p. 451)
McDonald, Lyle. The Ultimate Diet 2.0. Lyle McDonald, 2003
Beelen M, Burke LM, Gibala MJ, van Loon L JC (December 2010). «Nutritional strategies to promote postexercise recovery». International Journal of Sport Nutrition and Exercise Metabolism. 20 (6): 515–532. PMID 21116024. doi:10.1123/ijsnem.20.6.515
Как усваиваются глюкозамин и хондроитин?
Глюкозамин содержится в продуктах, а потому хорошо и легко усваивается желудочно-кишечным трактом. Дальше он транспортируется к хрящу и тканям, где синтезируется в необходимые вещества, в том числе хондроитин.
Какие микроэлементы помогают усваиваться глюкозамину?
Витамины группы А, B и C, фосфор, магний, кальций, селен, соли марганца, медь коллаген усиливают усвоение действующих веществ. Также важную роль связующего звена играет пищевая сера, которая увеличивает проницаемость мембраны клеток. Сера необходима для максимально быстрого и полного усвоения глюкозамина и хондроитина. Ее много в говядине, курице, треске, морском окуне, а также редьке, луке и во всех видах капусты.
Витамины группы А, B и C, фосфор, магний, кальций, селен, соли марганца, медь коллаген помогают усваиваться глюкозамину.
Гликогеновые запасы и спорт
Рассмотрим, как напрямую влияет гликоген на работу спортсмена:
- Гликоген быстро истощается благодаря нагрузкам. Фактически за одну интенсивную тренировку можно растратить до 80% всего гликогена.
- Это в свою очередь вызывает «углеводное окно», когда организм требует быстрых углеводов, для восстановления.
- Под воздействием наполнения мышц кровью, гликогеновое депо растягивается, увеличивается размер клеток, которые могут хранить его.
- Гликоген поступает в кровь только до тех пор, пока пульс не пересечет отметку в 80% от максимального ЧСС. В случае превышения этого порога, недостаток кислорода приводит к стремительному окислению жирных кислот. На этом принципе основана «сушка организма».
- Гликоген не влияет на силовые показатели – только на выносливость.
Взаимосвязь гликогена и спортивных результатов предельно проста. Чем больше повторений – больше истощения, больше гликогена в дальнейшем, а значит, больше повторений в итоге.
Особенности гликогена и метаболизм
Гликоген в организме человека выступает в качестве энергетического резерва, который готов восполнить нехватку глюкозы в любой момент. Но лишь при условии, что он запасен в печени. Если обобщить, то можно сказать, что речь идет о чистом сахаре, который не попадает в кровь без необходимости. Работает он так:
- после приема еды, глюкоза попадает в кровь, а остатки преобразуются в гликоген;
- во время физической нагрузки, концентрация глюкозы снижается и в дело вступает гормон, который восстанавливает баланс.
Но не стоит путать гликоген и глюкоген, который производится в поджелудочной железе и вместе с инсулином контролирует уровень глюкозы.
Если говорить о местах скопления вещества, то он концентрируется в печени и мышцах. Средний объем – 300 г, в зависимости от физического состояния человека.
Гликогеногенез – путь синтеза глюкогена и глюкозы, который протекает с затратой энергетических ресурсов. Происходит это после приема пищи, в момент пищеварения, занимает около двух часов. Другое название процесса – метаболизм гликогена и часто он протекает вместе с расщеплением гормона. Происходит это под контролем нервной системы и других гормонов. Но при нарушениях, возникают отклонения и опасные синдромы, например, гликогенозы.
Функции и свойства
Основное свойство гликогена – трансформация в глюкозу для удовлетворения потребностей организма под воздействием полисахарида гипатоцида. Если говорить о функциях, то они весьма разнообразны, так как содержится гормон в двух резервах.
Гликоген, который хранится в печени, передает в организм достаточный объем глюкозы и обеспечивает нормальные показатели сахара. При активной деятельности и физической нагрузке, уровень глюкозы снижается, поэтому гормон расщепляется на молекулы и выравнивает показатели.
Функции гликогена в мышцах – поддержание работы опорно-двигательного аппарата. Причем не стоит забывать, что сердце – это тоже мышца, поэтому при анорексии или при длительном голодании может развиться целый ряд сердечно-сосудистых патологий. Но не стоит думать, что нужно злоупотреблять жирной, сладкой пищей. Так как у гликогена тоже есть лимиты накопления. А при недостаточной активности в комбинации с перееданием, излишки глюкозы будут превращаться в жир, а не энергетический запас.
Еще одна важная функция гликогена в организме – участие в метаболических процессах и катаболизм сложных углеводов.
Потребности организма
При использовании запасов гликогена, их необходимо обязательно пополнять. Ведь это чревато снижением умственной деятельности и ухудшением качества жизни. Часто к полному истощению запасов приводит длительная без углеводная диета или интенсивные тренировки, занятия спортом.
Минимальная потребность в сутки – 100 г, но затраты могут увеличиваться во время:
- выхода из строгой диеты;
- напряженной работы или стресса;
- повышенной физической активности.
Уровень гликогена можно определить даже по внешним признакам, хотя лучше проходить профилактические осмотры и сдавать анализы. Так как любое отклонение от нормы ведет к ряду нарушений. Например, при излишках вещества развивается:
- сгущение крови;
- болезни печени и кишечника;
- ожирение.
При нехватке гликогена нарушается психоэмоциональное состояние и наблюдается депрессия, апатия, снижение иммунитета, рассеянное внимание и анорексия. Кроме того, ухудшается состояние кожи и волос, снижается тонус мышц
Гликоген
Гликоген является одним из основных углеводов, типичным для человека и животных.
Определение
Гликоген – полисахарид, состоящий из большого количества (до n=30000) остатков глюкозы (рис. 1).
Эмпирическая формула гликогена – (С6Н10О5)n, где: С6Н10О5 – остаток глюкозы, n — количество остатков глюкозы.
Где содержится в организме человека
В организме человека содержится около 450 г гликогена. Треть этого количества (то есть около150 г) накапливается в печени, остальные две трети (около 300 г) накапливается в мышцах (Я. Кольман, К.-Г. Рём, 2004), рис. 2. Другими словами в печени содержится 5-6% от массы печени, в мышцах — 2-3% от массы мышц. Содержание гликогена в других органах незначительно. Гликоген печени служит прежде всего для поддержания уровня глюкозы в крови. Гликоген мышц служит резервом энергии и не участвует регуляции уровня глюкозы в крови.
Рис. 2. Баланс гликогена в организме человека (Я. Кольман, К.-Г. Рём, 2004)
Синтез гликогена
Гликоген синтезируется в печени и мышцах из глюкозы, поступающей по кровеносным сосудам. Собственно, в печени гликоген представляет собой запасную, резервную форму глюкозы или депо глюкозы.
Свободная глюкоза не может накапливаться в печени и мышцах. Это связано с тем, что молекулы глюкозы имеют малые размеры и легко проходят через внешнюю оболочку клеток печени (гепатоцитов) и через сарколемму мышечных волокон (С.С. Михайлов, 2009). Синтез гликогена требует затрат энергии. Для присоединения к гликогену одного остатка глюкозы необходимо 41 кДж энергии. Синтез гликогена усиливает гормон инсулин.
О взаимосвязи гормонов и мышечной массы можно прочесть в моей книге «Гормоны и гипертрофия скелетных мышц человека»
Распад гликогена
В печени распад (лизис) гликогена называется гликогенолизом. Так как в гликоген печени распадается на глюкозу, этот процесс называется глюкогенезом. Он ускоряется гормонами глюкагоном, адреналином и норадреналином. При мышечной деятельности скорость мобилизации гликогена в печени зависит от интенсивности выполненной нагрузки. Так, например, при умеренной физической нагрузке скорость мобилизации гликогена возрастает в 2-3 раза, а при интенсивной – в 7-10 раз по сравнению с состоянием покоя.
Распад гликогена в печени происходит и во время отдыха. В результате этого образующаяся глюкоза способствует восстановлению запасов гликогена в сердечной мышце и скелетных мышцах (Н.И. Волков с соавт., 2000).
В мышцах гликоген обычно распадается при выполнении физической нагрузки. Распад гликогена стимулирует гормон адреналин. Если распад гликогена происходит в анаэробных условиях, этот процесс называется гликолизом.
Литература
- Кольман Я., Рём К.-Г. Наглядная биохимия.- М.: Мир, 2004.- 469 с.
- Мак-Комас, А. Дж. Скелетные мышцы. – Киев: Олимпийская литература, 2001.- 407 с.
- Михайлов, С. С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
Гликоген биологическая роль. Мобилизация гликогена (гликогенолиз)
Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.
Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.
В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.
Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови «целенаправленно» поддерживает только печень , в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.
В гликогенолизе непосредственно участвуют три фермента:
1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы.
Роль фосфорилазы при мобилизации гликогена
2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и «открытая» доступная α1,6-гликозидная связь.
3. Амило-α1,6-глюкозидаза , (» деветвящий » фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.
Польза полисахаридов для похудения
Отличить простой углевод от сложного очень легко. Все, что сладкое на вкус — быстрый моносахарид. Это враг для худеющих. Поэтому во время диет такие продукты исключаются. Для поддержания фигуры их также сводят к минимуму.
А вот полисахариды не имеют выраженного сладкого вкуса. Очень медленно переходят в энергию. Уровень сахара резко не повышается, так как организм их трансформирует в сахар постепенно.
Долгие углеводы надолго отобьют у вас аппетит, именно поэтому их не исключают из диет. Употребляя их, вы получаете чистую энергию без жира. Помимо того, что полисахарид позволяет вам долго не испытывать чувство голода он очень полезен. Продукты, содержащие полисахариды богаты витаминами и микроэлементами. Они укрепляют волосы, ногти, улучшают состояние кожи.
Обязательно обращайте внимание на гликемический индекс. Чем он выше у продукта, тем быстрее этот продукт трансформируется в глюкозу
А значит при похудении он бесполезен и даже вреден. Связь гликемического индекса с видами углеводов читайте в этой статье.
Особенно важен этот параметр для диабетиков. У медленных углеводов также может быть высокий ГИ. К таким продуктам относится картофель. Несмотря на содержание крахмала, ГИ очень высок. Употребляя картошку, вы не похудеете. Именно поэтому в диетических меню ее запрещают. Для снижения веса лучше отдавать предпочтение полисахаридам с низким гликемическим индексом.
Увеличение работоспособности в отдельном занятии
Углеводы
В связи с тем, что углеводы используются как преимущественный источник энергии при упражнениях с отягощениями, была выдвинута гипотеза, что потребление углеводов перед и/или после занятия увеличит общий объём выполняемой в тренировке работы (17, 23, 24). Предположение основывалось на факте истощения мышечного гликогена во время упражнений с отягощениями, в то же время уменьшались интенсивность и – впоследствии — общий объём работы (измеряемый путём умножения количества поднятого веса и выполненных повторений).
Эксперименты показали уменьшение гликогена скелетных мышц после тренировки с отягощениями (рис. 1) (26, 31, 44). Несмотря на это истощение гликогена, в большинстве исследований потребления углеводов перед занятием не обнаружено увеличение результативности в упражнениях с отягощением (15, 23, 24). Ограниченное количество исследований сообщили об увеличении результативности при потреблении углеводов перед занятием (16), следует отметить, что тренировка была не характерна практически (16 подходов упражнений для нижней части тела, выполняемые в изокинетическом динамометре) и не напоминала «обычную» программу спортивной и оздоровительной тренировки.
Рис. 1. Истощение гликогена мышц после 1 и 3 подходов сгибаний предплечий (26).
Белки/аминокислоты
Окисление белков (аминокислот) для обеспечения потребностей в энергии незначительно по сравнению с углеводами и жирами. Из 20 аминокислот только 3 окисляются для энергообеспечения упражнений — аминокислоты с разветвлёнными углеводородными цепями (BCAA – лейцин, изолейцин и валин). Даже когда окисляются ВСАА, уровень их окисления для энергообеспечения ниже, чем у жиров и углеводов (22). Согласно опубликованному реферату исследования (9), мужчины получали ВСАА по 40мг/кг массы тела за 30 минут до и сразу после тренировки для нижней части тела (то есть, 80 мг ВСАА на кг массы тела). Упражнения: жим ногами и, вслед за ним, разгибания голени -выполнялись до утомления в 4 подходах с интенсивностью 80% РМ (разового максимума). Авторы сообщили, что ВСАА не оказывают влияния на результативность в упражнении. В связи с ограниченным участием в окислительных процессах во время выполнения упражнений и неспособностью улучшать результаты, аминокислоты не нужно потреблять перед занятием с отягощениями, что не исключает возможного положительного влияния на результативность следующего занятия.
Потребление углеводов и белков
Потребление белков или углеводов отдельно не оказывает положительного влияния на тренировку с отягощениями. В эксперименте, проведённом в Техасском Университете под руководством Ivy, изучали влияние совместного потребления углеводов и белков на результативность упражнений с отягощениями (2). Испытуемые — не тренировавшиеся прежде мужчины, выполняли 3 подхода по 8 повторений до утомления в 7 упражнениях для верхней и нижней части тела. В качестве потребляемых добавок использовали искусственно подслащённый раствор электролитов (плацебо) или напиток, содержащий смесь углеводов и белков (в соотношении 4 : 1) по следующей схеме:
- 30 до упражнений: 26 г углеводов и 6,5 г сывороточного протеина или плацебо
- непосредственно перед упражнениями: 13 г углеводов и 3,2 г сывороточного протеина или плацебо.
Общее количество углеводов и белков, принимаемых в течение 30 минут перед занятием в экспериментальной группе, составило 39 и 10 г соответственно. Результативность в упражнениях с отягощениями измеряли путём подсчёта количества поднятого веса в третьем подходе, выполняемом до отказа в каждом из 7 упражнений. Не обнаружено существенных различий в обеих группах — потреблявшей добавки (534 ± 19кг) и потреблявшей плацебо (556 ± 22кг) (2).
Подводя итог, по-видимому, потребление углеводов и белов отдельно, а также их совместное потребление перед занятием не улучшает результативность тренировки с отягощениями в отношении общего количества поднимаемого веса. Противоположные результаты наблюдаются при потреблении белков и углеводов в отношении кратковременной и долговременной адаптации. Оба эти аспекта будут рассмотрены ниже.
Источники содержания углеводов в пище
Растительные продукты являются источником углеводов, которые служат нам пищей. Содержание углеводов в продуктах разное. Фактически наиболее важная группа продуктов, содержащих большее количество углеводов, – злаки, семена бобовых, корнеплоды и клубнеплоды.
В нашем питании больше всего углеводов поступает из зерновых продуктов
С одной стороны это происходит, из-за высокого содержания крахмала, наиболее важного полисахарида в рационе, а с другой стороны, из-за большого потребления продуктов этой группы в течение дня. Зерновые продукты должны быть частью 4-5 приемов пищи.
Зерновые продукты
Картофель, который раньше был вторым по величине источником потребляемых углеводов, теперь уступил место рису, макаронам, крупам или хлебу, но также и рафинированному сахару (сладости, сладкие напитки, кондитерские изделия).
Самым обильным источником углеводов являются продукты, полученные из натуральных растительных продуктов, таких как рафинированный сахар, картофельная мука и продукты из них. Например, искусственный мед, конфеты, картофельный сироп, а также пчелиный мед и сухофрукты. Эти продукты содержат 80–100% углеводов.
- Зерновые продукты (мука, крупа, макароны, хлеб, сухие завтраки), а также сладости, кондитерские изделия и некоторые фруктовые консервы (джемы, варенье, сиропы) богаты углеводами, в которых содержится 50-80% крахмала.
- Картофель, корнеплоды и напитки содержат около 10-25% углеводов.
- В молоке и молочных напитках содержание лактозы находится на уровне 4–4,5%.
Углеводы также содержатся в фруктах, которые в основном состоят из фруктозы и глюкозы (в незначительном количестве сахарозы, особенно в финиках). Содержание сахара в овощах может составлять 4–12%. Помимо растворимых сахаров и крахмалов, овощи содержат значительное количество пищевых волокон.
Определение гликогенеза
Гликогенез – это биологический процесс формирования гликоген из глюкозы, простейшего клеточного сахара. Организм создает гликоген в процессе гликогенеза, чтобы сохранить эти молекулы для последующего использования, когда в организме нет доступной глюкозы. Гликоген – это не то же самое, что жир, который накапливается для долгосрочной энергии. Магазины гликогена часто прибегают к перерывам между приемами пищи, когда кровь концентрация глюкозы упала. В этом случае клетки организма прибегают к своим запасам гликогена, подвергаясь обратному процессу из гликогенеза. Этот процесс называется гликогенолиз.
Роль вещества в организме человека
Функции гликогена весьма разнообразны. Помимо запасного компонента, он играет и другие роли.
Печень
Находящийся в печени гликоген помогает поддерживать нормальный уровень сахара в крови, регулируя его с помощью выделения или поглощения излишков в клетках глюкозы. Если запасы становятся слишком большими, а источник энергии продолжает поступать в кровь, он начинает откладываться уже в виде жиров в печени и подкожной жировой клетчатке.
Вещество позволяет осуществлять процесс синтеза сложных углеводов, участвуя в его регулировании и, значит, в обменных процессах организма.
Питание мозга и других органов происходит во многом благодаря гликогену, поэтому его присутствие позволяет осуществлять и мыслительную деятельность, обеспечивая достаточное количество энергии для деятельности головного мозга, потребляющего до 70 процентов глюкозы, образующейся в печени.
Мышцы
Важное значение имеет гликоген и для мышц, где он содержится в немного меньшем количестве. Основная задача его здесь – обеспечение движения
Во время действия происходит потребление энергии, которая образуется за счет расщепления углевода и окисления глюкозы, во время покоя и поступления новых питательных веществ в организм – создание новых молекул.
Причем это касается не только скелетных, но и сердечной мышцы, качество работы которой во многом зависит от наличия гликогена, а у людей с недостатком массы тела развиваются патологии сердечной мышцы.
При недостатке вещества в мышцах начинают расщепляться другие вещества: жиры и белки. Распад последних особенно опасен, поскольку приводит к разрушению самой основы мышц и дистрофии.
В тяжелых ситуациях организм способен выйти из положения и создать себе глюкозу самостоятельно из неуглеводных веществ, этот процесс называется гликонеогенезом.
Однако, его значение для организма значительно меньше, поскольку разрушение происходит по несколько иному принципу, не давая того количества энергии, которое необходимо организму. В то же время используемые для него вещества могли бы быть израсходованы на другие жизненно важные процессы.
Кроме того, это вещество обладает свойством связывать воду, накапливая и ее тоже. Именно поэтому во время интенсивных тренировок спортсмены сильно потеют, это выделяется связанная с углеводом вода.
Образовательное видео:
В каких продуктах содержится глюкозамин?
Глюкозамин в продуктах питания встречается часто, но он легко разрушается под влиянием различных факторов еще до того, как попадет в наш организм. Причина в неустойчивости глюкозамина и хондроитина – разрушение происходит при варке, жарке или тушении. В основном в пище он присутствует в виде полимеров – протеогликанов, коллагена, белков и других составляющих.
Узнав, в каких продуктах содержится глюкозамин, не спешите их употреблять в пищу – для начала проверьте, нет ли у Вас на них аллергии. Еще лучше – проконсультируйтесь с врачом!
Полезные продукты, содержащие глюкозамин
На чем делают акцент врачи?
Мясо птицы и говядины. Из-за того, что большая часть глюкозамина в продуктах питания разрушается, рекомендуют варить мясной бульон на медленном огне, не переваривать.
Свиные уши, говяжьи хвосты, куриные лапы. Из этих ингредиентов можно приготовить холодец. Однако в таком блюде не только польза, но и вред – излишек холестерина в составе может скапливаться на стенках сосудов.
Сыры в чистом виде без тепловой обработки.
Морская и речная рыба. Особенно семга и лосось. Пациентам, которым диагностировали 1 стадию артроза, советуют употреблять глюкозамин в продуктах – готовить рыбное заливное с добавлением желатина хотя бы 1 раз в неделю!
Морепродукты. Мидии, креветки.
Мармелад и пастила
Осторожно! Людям с сахарным диабетом лучше воздержаться.
Яйца (всмятку, не переваренные).
Ростки пшеницы, грибы, орехи, брокколи, морские водоросли. В них содержится большая концентрация коллагеноподобных соединений.
Будьте внимательны! Даже регулярное употребление продуктов, содержащих глюкозамин, не гарантирует здоровье хряща при больших бытовых и профессиональных нагрузках на суставы, метаболических нарушениях, а также возрастных изменениях.
Существует множество продуктов, содержащих глюкозамин.
Вредные продукты
Некоторые блюда и продукты могут навредить суставам. Среди них:
- Копчености из-за повышенного содержания канцерогенов. Даже если для их приготовления использовали продукты, содержащие глюкозамин, копчености могут вызвать патологические изменения в суставах.
- Щавелевая кислота. Ее можно найти в щавеле и фруктах с косточками.
- Большое количество кофе и чая.
И хотя много глюкозамина в продуктах питания, таких как панцири и оболочки ракообразных (креветок, омаров, раков), есть их в чистом виде настоятельно не рекомендуют!
Синтезирование
Сначала тело использует полученные углеводы в стратегических целях, а остатки откладывает «на черный день». Дефицит энергии является причиной для расщепления гликогена к состоянию глюкозы.
Синтез вещества регулируется гормонами и нервной системой. Этот процесс, в частности в мышцах, «запускает» адреналин. А расщепление животного крахмала в печени активизирует гормон глюкагон (вырабатывается поджелудочной железой во время голодания). За синтезирование «запасного» углевода отвечает гормон инсулин. Процесс состоит из нескольких этапов и происходит исключительно во время приема пищи.